
When does the Hardy-Weinberg equilibrium apply?

Godfrey Harold Hardy 1877-1947

Wilhelm Weinberg 1862-1937

© Michael Krawczak, Institute of Medical Informatics and Statistics Kiel / Germany

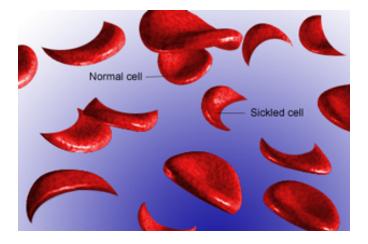
Conditions necessary for HW equilibrium:

- **1. Large population**
- 2. Random mating
- 3. No genetic drift
- 4. No gene flow migration
- 5. No natural selection
- 6. No mutations

Hardy-Weinberg and Evolution

Changes in HW equilibrium = evolutionary change

Factors that bring about evolutionary change (messes up Hardy-Weinberg)


- **1. Small population**
- 2. Non-random mating
- **3. Genetic Drift**
- 4. Migration (gene flow)
- 5. Natural selection
- 6. Mutation

1. Mutations

- Changes in DNA
- Inheritable
- Occur during *Meiosis*
 - Spermatogenesis
 - oogenesis

2 types of mutations

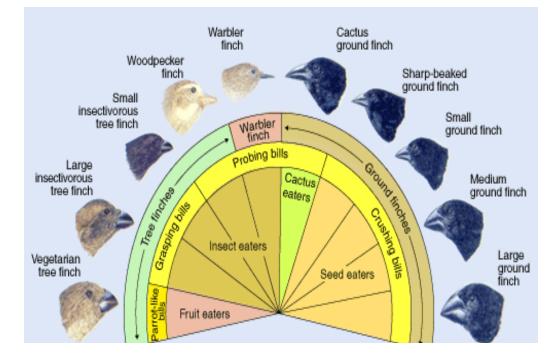
- Chromosome mutation → gain or loss of a chromosome (e.x. Down's syndrome)
- Point (gene) mutation → change in a gene on a chromosome (e.x. Sickle celled anemia, Tay Sachs disorder)

1. Mutations

- Usually show up in the *homozygous recessive genotype*
 - Therefore they remain hidden in a generation through the heterozygous (Rr) genotype

Mutations → genotypic VARIATIONS

- Mutations are the **original source** of variation
- Mutation rates through evolution were extremely slow, but resulted in a change in species to better their chances for survival
- May be beneficial in one environment and detrimental in another
- Survival of the "fittest"


1. Mutations

Environmental change selects for short antennae

When is a trait beneficial in one environment but detrimental in another?

- Darwin's Finches
- Beak shape determines environment in which a finch can survive
- Short beaked finches better at eating and gathering seeds
- Long beaked finches better at searching for "grubs" in the mud
- Over time, mutations in beak shape genes, allowed specific types of finches to survive in specific environments

2. Genetic Drift

- Also known as "random genetic drift"
- When a population size decreases → genetic drift occurs
- Results from chance events → natural disaster, human interference, migration, unsuccessful matings, deaths
- End up with changes in frequencies of alleles in a population based on chance events

2. Genetic Drift & Founder Effect

Founder Effect

- The Founder Effect → extreme example of genetic drift
- Founder Effect: loss of genetic variation when a new population is created from a small subset of a larger population
 - New population has a disproportionate frequency of alleles of the "founders" of that population
 - Ex. Amish communities

2. Genetic Drift & Founder Effect

(EG) Ellis-van Creveld syndrome

- Short stature, polydactyly, hole in heart chamber
- More frequent in Amish community because "founders" carried the recessive allele
- Short stature is in 7% of Amish population while in most others it is .1%
- Passed the alleles to offspring

Small community → allele contained in the community → increased frequency of syndrome

2. Genetic Drift & Bottleneck Effect

Bottleneck Effect

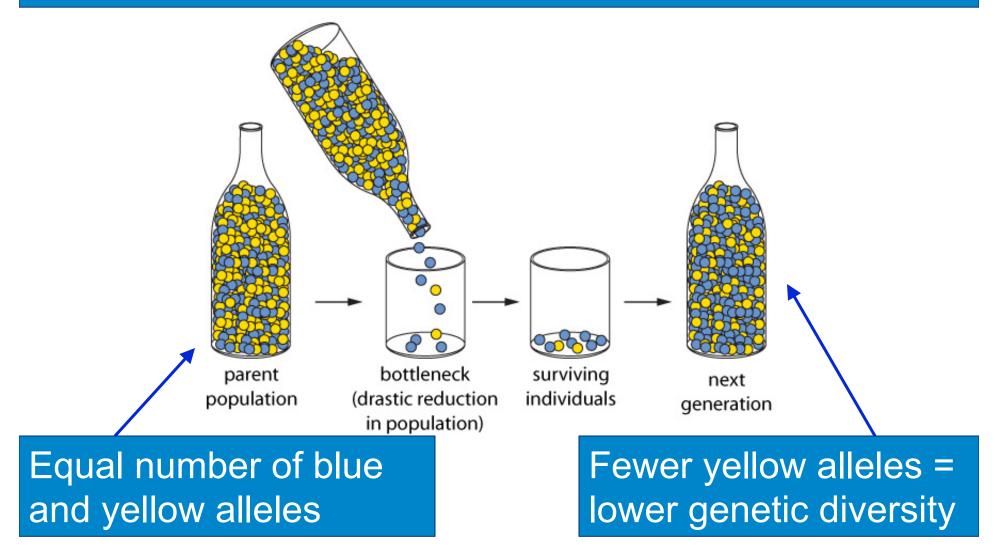
 Occurs when <u>a few members</u> survive a widespread elimination of a species

Cheetahs in Africa

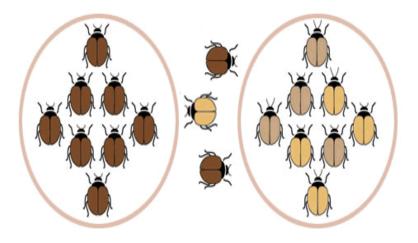
-12,000 years ago 75% were wiped out

-Low genetic diversity has led to them having poor sperm quality, infectious disease susceptibility, kinked tails, and dental problems

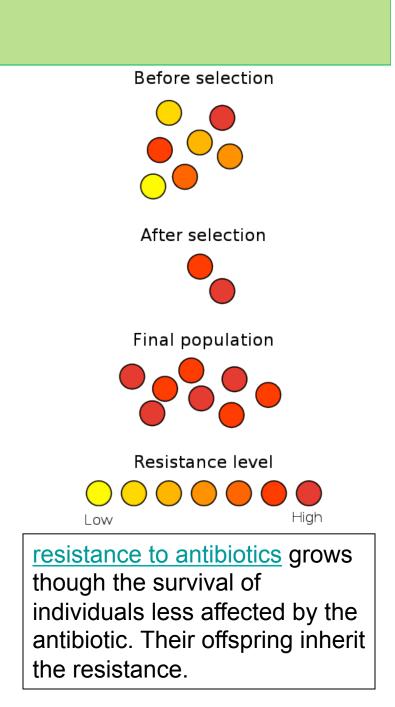
Elephant Seals


-hunted to 50-100 individuals -now are over 30,000 but not very genetically different from each other

 Drastically reduced population leads to decreased genetic variation


2. Genetic Drift & Bottleneck Effect

3. Migration


"Gene flow"

- Immigration → movement of members of a species
 into a population
 - Genes ADDED
 - Gene pool **EXPANDS**
- *Emigration* → movement of members of a species
 out of a population (exit)
 - Genes **REMOVED**
 - Gene pool CONTRACTS
- Gene frequencies change

4. Natural Selection

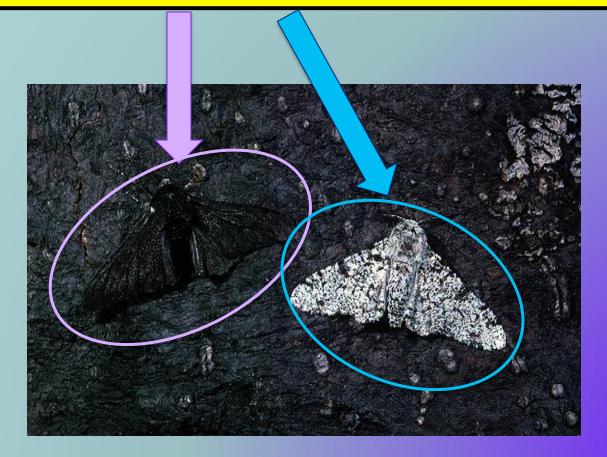
- Primary mechanism of evolution
- Survival of the "fittest"
 - Organisms best suited for a given environment will survive and pass their genes on to the next generation

The Peppered Moth

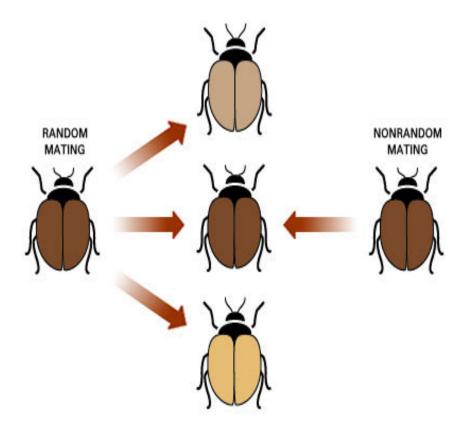
Pre-Industrial Revolution in England

Birds ate dark moths because they stood out on white bark

Light colored moths were selected for because they are camouflaged on white bark


Post-Industrial Revolution

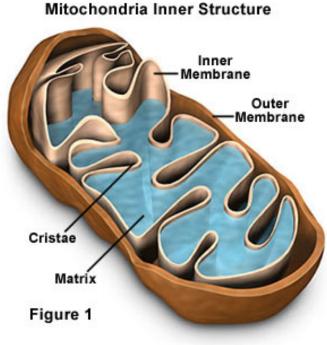
- Birds ate white moths because they stood out on dark bark
- Dark colored moths were selected for because they are camouflaged on dark, polluted bark


Organisms that are selected for have a greater chance of survival.

Organisms that are selected against have a lower chance of survival.

5. Non-random mating

- Selective breeding
 - Individuals seek mates within a small population
 - Particular genes are selected for during nonrandom mating
- Non-random mating is a form of Natural Selection
 → contributes to evolution



Bozeman: Summary of factors that cause evolution 7:39 http://www.youtube.com/watch?v=lk4_alocyHc

Mitochondrial DNA & Evolution

Mitochondria

- the "power plant" of the cell (production of ATP – fuel for cell activity)
- contain their own DNA (mtDNA) in small looping chains
- Since mitochondria contain mtDNA, they can be used to study evolutionary relationships

Mitochondrial DNA (mtDNA) is also useful in tracing **maternal** lineages.

mtDNA used to trace extinct maternal lineage from recovered mummies

Check out this website for tutorial on how a variety of factors effect evolutionary change in populations.

Adaptation

Are these happy face spiders all the same species?

Yes, they are all members of the same species. They freely mate and have similar reproductive behaviours. They live in Hawaii.

Meet the Liger!

Meet Hobbs the 'Liger'

- cross between a male lion and a female tiger
- sterile male

- challenges geographic isolation because **interbreeding between species occurs**, **BUT ligers are typically sterile** therefore this is 'unsuccessful breeding'

Adaptations

- Adaptations are *inherited traits* that improve the chances of survival and reproduction of organisms
- 3 types
 - 1. Physical Adaptations
 - 2. Behavioural Adaptations
 - 3. Physiological Adaptations

Physical Adaptations

- Structural/anatomical adaptations
- In birds
 - Wings
 - Feathers
- Opposable thumb in Panda Bears
- Polar bears Black skin and hollow hairs

Behavioral Adaptations

- Courtship- mating ritual
- 2. Migration- geese fly south for winter
- 3. Nocturnalism- active during the night
- Metabolism- how fast an individual uses food for energy
- 5. Hibernation sleeping through the winter
- Estivation slowing of metabolism in some animals during a hot or dry period

Lyre bird: http://www.youtube.com/watch?v=VjE0Kdfos4Y&safety_mode=true&persist_safety_mode=1&safe=active Bird of paradise: http://www.youtube.com/watch?v=HyvxlUpEjgl&safety_mode=true&safe=active&persist_safety_mode=1

Physiological Adaptations

Pheromones

- chemicals secreted by organisms to attract or repel other organisms
 - Examples: Sexual attractants or alarms
- Poison glands (frogs)
- Enzymes control bodily functions
- Venom by snakes
- Toxins produced by plants & animals (skunk, sea anemones)

